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Abstract. Dynamic Call Graphs trace program execution and are used
to model function coverage. They help identify which function calls are
missed but do not offer insights on whether those calls are important
to cover. We propose a weighted representation of control flow called
Natural Call Graphs (NCGs), which can be used to identify important
function calls. These weights represent the relevance of the callee to the
caller and are computed using information-theoretic reasoning on tokens
in the functions. We create a dataset of 1,234 manually verified function
calls, containing a mix of relevant and irrelevant functions, from ten
Python open-source projects. On this dataset, our approach achieves a
peak precision of 78% and a recall of 94% in identifying relevant functions
missed by tests.

Keywords: Dual-channel Research · Software Testing · Program Anal-
ysis.

1 Introduction

Identifying functions that are missed by a test is essential for improving the test,
and consequently, function coverage. Developers, who are under time-to-market
pressure, rarely aim for full function coverage and can benefit from feedback on
which function calls to prioritise during testing [13]. For example, a function call
may invoke a logger to log diagnostics and this may not be a part of the software
requirement. In this case, testing should prioritise calls that are important for
the requirement and deprioritise calls to the logger. While Dynamic Call Graphs
can help identify the calls that are missed, they do not offer insights on the
importance of missed functions.

In this research, we present a technique to rank function calls to establish
relevance of the callee to the caller. Our hypothesis is that a callee would contain
tokens similar to those in the caller if it is helping the caller in its core objective.
On the other hand, it will contain tokens dissimilar to the caller if it is performing
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housekeeping tasks like diagnostic logging, that are unimportant to the caller.
Our approach falls under the domain of Dual-Channel Software Engineering
[5]. Dual-channel software engineering uses information from both the natural
language and algorithmic channels in the code. Information from function tokens
has been recently used to improve various software engineering tasks such as
program hardening [8] and commit deconflation [16]. We present an extension
of Call Graphs called Natural Call Graphs whose edges are weighted based on
the importance of the callee to the caller. We show that these weights can be
relied on to identify important functions that should be covered in a test but are
missed by it.

Our main contributions are a methodology and a tool (Section 3) which can
rank function calls, based on their importance, that are missed by a test. We
evaluate our tool on a ground truth which consists of 1,234 manually vetted cases
from the Dynamic Call Graphs of 4,004 integration tests from ten open-source
projects of varied popularity (683 - 6.6K stars on GitHub) and size (21K - 449K
LOC). Our dataset and tool are publicly available 3. Our tool achieves a peak
precision of 78% and a recall of 94% in identifying relevant functions that are
missed (Section 4). We present a selection of cases in Section 4.5 to highlight the
capability of the tool to correctly identify functions that should be considered
for integration testing.

2 Background

In this section, we discuss a motivating example for our work and introduce key
terminology before providing an overview of our approach.

2.1 Motivating Example

Figure 1 presents a motivating example collected from file localdb.py from Conan
[6]. Function get_login performs a query on the database to retrieve data, which
requires a connection to be established. Function _connect is used to return this
connection object, making it highly relevant for function get_login. In addition,
it can be seen that a set of tokens (connection, connect, self) from the caller appear
also in a high frequency in the callee. This supports our hypothesis that sharing
of tokens between functions correlates with the callee being relevant to the caller.

2.2 Our approach

In this section, we give an overview of the program representations we use for
identifying important functions that are missed during testing. The details of
our approach can be found in Section 3. We first provide some key definitions
for terms that are used in the paper.

Natural Call Graph (NCG). An NCG is a weighted call graph and it can be
defined as a tuple NCG = (V,E). V represents the sets of all functions in the
3 https://github.com/Constantin-Petrescu/FindIT/

https://github.com/Constantin-Petrescu/FindIT/
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1 def get_login(self, remote_url):
2 """ Returns login credentials. This method is also in charge of expiring them. """
3 with self._connect() as connection:
4 try:
5 statement = connection.cursor()
6 statement.execute(’select user, token, refresh_token from ...’)
7 ...

Listing 1: Caller

1 def _connect(self):
2 connection = sqlite3.connect(self.dbfile)
3 connection.text_factory = str
4 try:
5 yield connection
6 finally:
7 connection.close()

Listing 2: Callee

Fig. 1: Motivating example from Conan library. The caller get_login runs a query on
the database by executing the callee, _connect, to receive a database connection object.

program, such that any function fi that belongs to the program, then fi ∈ V .
E is the set of direct weighted edges representing the function calls between
vertices, where the edge weights represent the callee’s relevance to the caller.
Such that, if f1, f2 ∈ V , there is an edge f1 → f2 ∈ E and the relevance of f2
to f1 is defined as the relative importance of f2 to f1’s objective. We compute
relevance using conditional entropy of the tokens in f2 with respect to f1.

The NCG contains all methods, and we do not wish to check the relevance
of methods that have already been covered by a test. Thus, we end up using two
types of NCGs. First is the StaticNCG which coincides with the NCG of the
program. Second is a Dynamic NCG, which is a sub-graph of the application’s
static NCG containing only those nodes and edges that are traversed in a test
execution. Then, we explore the functions that can be called from the nodes in
the Dynamic NCG to identify their importance. Based on the relevance scores
of the function calls, we classify them as Core or Fringe, defined below.

Core and Fringe. For a caller f1 and a callee f2, the function f2 is a core func-
tion for f1 if the successful completion of f1’s objective depends on it. Otherwise,
it is a fringe function for f1.

Cross-module calls. While the example in Figure 1 reinforces our hypothesis,
cross-module calls are an exception to this. Larger requirements are often imple-
mented across multiple modules that use different namespaces and potentially
feature varied function tokens. In order to rank function calls in such cases, we
need to identify callees that use dissimilar tokens but are an important part of
the software that implements the requirement. In order to identify such meth-
ods, we reason over a sequence of function calls instead of a single call. We call
this sequence a Candidate Path.

Candidate Path. A Candidate Path is sequence of four functions f1 → f2 →
f3 → f4 where f1, f2, f3 ∈ DynamicNCG. This means that f1, f2 and f3 are
already covered by an integration test. The fourth function f4 ∈ StaticNCG is
an untested function at a one-hop distance from f3 but not covered by a test.
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Fig. 2: Our tool’s software architecture to identify relevant missed methods by
integration tests.

f4 is identified by statically extracting the call graph, and therefore a call to it
is represented using the arrow s−→ where s stands for static.

The Candidate Paths allow us to contextualise the relevance score for s−→, by
considering the scores for prior calls f1 → f2 → f3, before classifying it as either
core or fringe. An abnormal relevance score could mean a cross-module call.

3 Methodology

This section presents a description of the techniques used by the tool. Our tool is
presented in Figure 2 and it consists of four components: Generation of the Static
NCG, Construction of the Dynamic NCGs, Identification of Candidate Paths by
mapping the Static and the Dynamic NCGs, and the Decision Algorithm.

3.1 Generation of the Static NCG

Our tool takes any Python project as input and generates a Static NCG. To
construct these, we made use of PyCG [20], the most complete tool for Python
project Call Graph generation at the time. We extended the PyCG project to
collect tokens for both algorithmic and natural language channels by collecting
tokens from the function signature, parameters, and body. Conditional entropy
[7] is computed between the tokens in the caller and callee and used as edge
weights between functions. We store the Static NCG in JSON format.

3.2 Construction of the Dynamic NCGs

For each integration test the tool generates a Dynamic NCG by tracing the
integration test execution and mapping the trace output with fully qualified
function names. These are then used to identify Candidate Paths.

Initially, the integration tests are executed and traced. Based on the project
dependencies, execution of the integration tests is performed using a testing
framework such as Pytest [12], Nose [18] or Tox [22]. We experimented with
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multiple tracing libraries, but the most reliable results came from using the built-
in library Trace [21]. Thus, during the execution of an integration test, Trace is
used to collect the execution stacks and generate a report with functions calls.

The output files from Trace for each passed integration test contain sets of
caller-callee pairs. Since the caller-callee functions have partially qualified names,
the second step requires parsing the project files to complete the names. The tool
uses regular expression matching to map the partially qualified names to the fully
qualified names. With the mapping complete, the edge weights of the Dynamic
NCG are set using the entropic information from the project’s Static NCG.

3.3 Candidates Paths

The tool identifies sequences of three tested functions from the Dynamic NCG.
The initial step of Candidate Path generation is the identification of all pairs of
two connected dynamic edges where the last node is a leaf. A function is deemed
a leaf when it does not appear as a caller in any edges. The tool performs two
passes over the edges: first, all edges with a leaf are identified; second, all edges
where the callee is the caller of a leaf node are identified to form a sequence of
three tested functions.

The next step is to form possible Candidate Paths by finding a function in
the Static NCG that is one-hop away from the leaf dynamic node. This requires
an iteration over all the edges from the Static NCG. A potential Candidate Path
exists if a static edge is found where the caller coincides with the leaf node from
the dynamic edge. The last step is to validate that the potential Candidate Path
is an actual Candidate Path: this is done by checking that the static edge is not
tested by any integration test.

3.4 Size and Entropic Decision Algorithm

This component provides the mechanism to decide if the statically selected func-
tion is core or fringe for the path. The Decision Algorithm can leverage two
potential indicators size and entropy. A Special Method Filter [2] is also applied
to identify fringe cases. While the tool can use each indicator and the filter sepa-
rately or together, the optimal configuration is decided based on the performance
analysis presented in Section 4.3.

Size Decision

Size is used as an indicator to mark a Candidate Path as core or fringe. The
Decision Algorithm computes the size of the callee as the percentage size relative
to the caller. Usually, a small callee can be viewed as a function with only one
goal and few instructions. Some examples of such cases are wrappers, getters
and setters. Short callee cases could mislead an Entropic Decision Algorithm
since the callee could have only different tokens compared to the caller. We
hypothesise that the entropic decision can be used if the callee and the caller have
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comparable sizes. The goal of the Size Decision Algorithm is not to detect very
long functions, which are poor programming practices [14], but rather functions
of relatively similar sizes. The Decision Algorithm initially uses the size filter
and then passes the Candidate Paths for entropic evaluation.

Entropy Decision

The Decision Algorithm uses the entropic values on the path to choose if a
Candidate Path is core or fringe. For a path f1 → f2 → f3

s−→ f4, the tool
computes the entropic metric as the difference between the conditional entropy
of f4 given f3 and f2 and the conditional entropy of a f3 given f2 and f1. We
use two functions to contextualise a call; using one would lead to fluctuations in
the conditional entropy, in case the sizes of the caller and callee are imbalanced.
Based on the entropic value, there are three distinct interpretations: similar
entropic values, negative values and positive values.

Similar entropic values mean that both the dynamic average and the condi-
tional entropy of the static edge have similar values. This means that the callee is
comparable in size with the rest of the functions and shares a consistent amount
of tokens. In other terms, the callee performs similar instructions compared to
the rest of the functions from the Candidate Path. In this case, we hypothesise
that an integration test should also test the static function. A negative entropic
value shows that the callee is more diverse and possibly larger than the functions
from the rest of the path. We continue the hypothesis by affirming that more
diverse functions are desired to be tested in integration tests since they perform
new instructions compared to the rest of the path.

A large entropic value shows that the static conditional entropy has a signifi-
cantly smaller value. This can indicate one of two aspects about the static callee.
One aspect is that the callee has a very small number of tokens, and in general
that the callee can be considered a wrapper for other functions. The other aspect
is that the same tokens are used in the statically selected function. This means
that the callee provides utility functionalities for the existing objects. Part of
our hypothesis is also that large entropic values indicate functions of lesser im-
portance for the tested path. Thus, the Entropic Decision Algorithm will mark
such paths as fringe cases, while the rest will be marked core.

Special Method Filter

Python contains a set of special ‘Dunder‘ methods for built-in data types and
classes [2]. Some examples of such methods are: __cmp__, __get__, __next__, __main__

and many others. In Candidate Paths, such methods will rarely provide any rele-
vant instruction with respect to the path. Thus, this filter ensures that Candidate
Paths where the static caller is a special method are marked by the Decision Al-
gorithm as fringe. This will aid the tool avoid in marking cases as false positive
and provide the users the chance to inspect more relevant core cases.
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Name Stars LOC Static NCGs Integration
Nodes Edges Tests

Conan 6.6K 108K 3,458 1,932 2,043
Faust 6.5K 46K 2,662 1,676 1,081
Docker-API 6.1K 21K 738 1,242 402
Pex 2.2K 449K 1,800 5,110 288
Strawberryfields 683 32K 2,607 1,853 133
iSort 5.6K 23K 349 269 23
Emcee 1.3K 370K 155 82 19
Tox 3.2K 260K 517 5,770 9
RxPY 4.4K 39K 2,995 444 3
Sockeye 1.2K 15K 785 3,450 3

Table 1: Shows the benchmark’s details: the high-level overview of projects, their
Natural Call Graphs representation, the number of integration tests.

4 Evaluation

This section provides insights into the performance and utility of our approach
by addressing the following research questions:

RQ1 To what extent do the size and popularity of Python open-source projects
influence the quality of their integration tests? (Section 4.1)

RQ2 To what extent can the tool’s performance be improved using different
configurations of the Decision Algorithm: a size decision, an entropic decision,
or a combination of both? (Section 4.3)

RQ3 Can the tool consistently distinguish between core and fringe cases? (Sec-
tion 4.4)

RQ4 Are the statically selected functions important to core paths? (Section 4.5)

RQ1 aims to assess how integration testing relates to a project’s size and
popularity to determine if an integration testing tool is necessary. RQ2 investi-
gates whether an entropic decision alone is sufficient for identifying core cases
and whether considering function size can aid in identifying fringe functions.
RQ2’s goal is to determine the optimal configuration based on a sample dataset
consisting of 10% of the data. RQ3 evaluates the performance of our approach
on the remaining 90% of the data for practical use in software development.
RQ4 aims to generate insights about the nature of the core functions.

4.1 Benchmark

To answer RQ1, we constructed a benchmark of ten open-source Python projects
listed in Table 1. The selection process for these projects considered two main
factors. The first factor was that the projects had a set of integration tests that

https://github.com/conan-io/conan/tree/7811bd4dd70293ee87ffa20770a059aed09d3404
https://github.com/robinhood/faust/tree/01b4c0ad8390221db71751d80001b0fd879291e2
https://github.com/docker/docker-py/tree/82cf559b5a641f53e9035b44b91f829f3b4cca80
https://github.com/pantsbuild/pex/tree/1f8e25a714e52c45a50a6d6ab2ee7cb9e21a92bb
https://github.com/XanaduAI/strawberryfields/tree/9a9a352b5b8cf7b2915e45d1538b51d7d306cfc8
https://github.com/PyCQA/isort/tree/12cc5fbd67eebf92eb2213b03c07b138ae1fb448
https://github.com/dfm/emcee/tree/039c48f442980eb29ad27429aa8a4b6a4e8760a9
https://github.com/tox-dev/tox/tree/efcfef2c2b1cc38697a827f6f5576798d51940d0
https://github.com/ReactiveX/RxPY/tree/624260adbf5b009793d0da9031773f6079abf765
https://github.com/awslabs/sockeye/tree/be2b34449c908012916530ef8aeed301e5e82222
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Name Integration Dynamic NCGs Candidate Paths Ground
Truth

Tests Nodes Edges Total Unique Unique
Untested

Core
Cases

Fringe
Cases

Conan 2,043 19,531 19,869 1,659 778 649 490 159

Faust 1,081 1,512 1,800 312 26 26 4 22

Docker-API 402 14,843 19,474 2,630 159 121 18 103

Pex 288 14,492 16,406 1,363 90 78 45 33

Strawberryfields 133 7,170 7,682 3,725 244 194 137 57

iSort 23 1,240 1,336 470 37 22 6 16

Emcee 19 348 343 19 10 9 5 4

Tox 9 269 301 50 10 10 7 3

RxPY 3 219 308 87 59 58 7 51

Sockeye 3 719 989 177 95 67 26 41

Totals: 4,004 60,343 68,508 10,465 1,508 1,234 745 489

Table 2: Shows the Dynamic NCGs built on the integration tests, the distribution
of the Candidate Paths across the benchmark, and the distribution of Core and
Fringe cases from the Ground Truth.

could be successfully executed. The second factor considered was the popularity
and the size of the project. The selection was made based on a sorted list of the
most starred projects. Six projects are relatively small, between 10K and 50K
lines of code, while the remaining four are larger, ranging from 108K to 449K
lines of code.

We generated a Static NCG for each project in the benchmark. The general
trend observed is that a project’s size somewhat correlates with the number
of functions and function calls. However, there are some irregularities, such as
Strawberryfields, which has only 32K lines of code but 2,607 functions and 1,853
edges. This is because Strawberryfields is written in an object-oriented style
and it prioritises efficiency and portability, which requires a heavy reliance on
overloading and inner functions. Interestingly, Table 1 shows that the number of
stars or the size of a project does not necessarily correlate with the number of
integration tests. This highlights the need for tools to identify which parts of a
program have been missed in integration testing.

4.2 Establishing Ground Truth

Table 2 shows the distribution of core and fringe cases generated from the bench-
mark. We used 4,004 integration tests to generate Dynamic NCGs. Our tool
found 10,465 Candidate Paths by analysing the Static and Dynamic NCGs. We
reduced the number of Candidate Paths to 1,234 by removing exact duplicates

https://github.com/conan-io/conan/tree/7811bd4dd70293ee87ffa20770a059aed09d3404
https://github.com/robinhood/faust/tree/01b4c0ad8390221db71751d80001b0fd879291e2
https://github.com/docker/docker-py/tree/82cf559b5a641f53e9035b44b91f829f3b4cca80
https://github.com/pantsbuild/pex/tree/1f8e25a714e52c45a50a6d6ab2ee7cb9e21a92bb
https://github.com/XanaduAI/strawberryfields/tree/9a9a352b5b8cf7b2915e45d1538b51d7d306cfc8
https://github.com/PyCQA/isort/tree/12cc5fbd67eebf92eb2213b03c07b138ae1fb448
https://github.com/dfm/emcee/tree/039c48f442980eb29ad27429aa8a4b6a4e8760a9
https://github.com/tox-dev/tox/tree/efcfef2c2b1cc38697a827f6f5576798d51940d0
https://github.com/ReactiveX/RxPY/tree/624260adbf5b009793d0da9031773f6079abf765
https://github.com/awslabs/sockeye/tree/be2b34449c908012916530ef8aeed301e5e82222
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Size
Level

Precision Recall Accuracy F1-
score

Entropy
Level

Precision Recall Accuracy F1-
score

∅ 0.67 1.0 0.68 0.81 ∅ 0.67 1.0 0.67 0.80
[0, 5) 0.76 0.99 0.78 0.86 [3.5, ∞) 0.68 0.96 0.73 0.82
[0, 10) 0.76 0.83 0.71 0.79 [2.8, ∞) 0.72 0.94 0.75 0.83
[0, 20) 0.79 0.71 0.68 0.75 [2.6, ∞) 0.74 0.94 0.76 0.84
[0, 50) 0.80 0.40 0.53 0.53 [2.4, ∞) 0.73 0.92 0.75 0.83
[0, 100) 0.82 0.28 0.48 0.41 [1.0, ∞) 0.73 0.63 0.63 0.69
[0, 150) 0.75 0.11 0.38 0.19 [0.0, ∞) 0.72 0.17 0.39 0.31
[0, 200) 0.60 0.04 0.34 0.07 [-1.0, ∞) 0.75 0.07 0.35 0.13

[-2.5, ∞) 0.81 0.01 0.33 0.02

Table 3: Shows the Precision, Recall, Accuracy and F1-score when the tool marks
cases as fringe on different levels on the sampled dataset. Left side shows per-
formance for size, while right side shows for entropic level.
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Fig. 3: Distribution of core and fringe cases on the sampled dataset.

and paths that had already been tested. To establish the ground truth, each case
in the final dataset was labelled as either core or fringe.

During the labelling process, three raters were involved. Two raters were male
PhD students residing in the United Kingdom, with 4 and 8 years of program-
ming experience. The third rater was a male software testing engineer residing
in Romania with three years of programming and testing experience. The raters
were granted access to the source code for each case and were tasked with eval-
uating the importance of an untested function to the rest of the tested functions
within a candidate path.

Out of the 1,234 cases, the raters have marked 777, 755 and 776 cases as
being core. The ground truth consists of 786 core and 448 fringe cases, repre-
senting 64% and 36% of the candidate paths, respectively. To assess the level
of agreement among the raters, we computed the inter-rater agreement using
Cohen’s Kappa coefficient. The coefficient was calculated for each pair of raters,
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Fig. 4: Tool’s performance under different settings on the testing set.

resulting in the values: 0.80, 0.83 and 0.89. These high agreement values indicate
a substantial level of consensus among the raters. Based on the ground truth,
we initially sample a set of 10% of the data to optimise the size and entropic
Decision Algorithm. Then, we evaluate the tool’s performance using the rest of
the data from the ground truth.

4.3 Optimal Configuration for Decision Algorithm

The first step is to understand if the relationship between the sizes of the callee
and the caller can influence the decision process of the cases. We hypothesise in
Section 3.4 that a small sized callee would provide little insight into the entropic
decision, which could significantly increase false positives. For this reason, Figure
3a presents the distribution of core and fringe cases from the sampled dataset. It
can be noticed that there are a large number of fringe cases in the low size levels.
As the callee’s size increases, the number of core cases also grows. Cases with a
very small callee also translate into fewer operations performed by the callee. In
most of these cases, the callees were either utility functions, logging functions or
functions to initialise objects. Since a high proportion of grouped fringe cases
can be seen, we compute and present in Table 3 the precision, recall, accuracy
and F1-score for all levels. The F1-score hits the peak at a value of 0.86, where
[0, 5) is selected as the size limit for deciding core and fringe cases. This means
the tool would automatically mark each case as a fringe where the callee’s size
is proportionally smaller than 5% of the caller.

Our hypothesis from Section 3.4 suggests that callee-caller candidates with
similar entropy values translate into cases where the callee performs core actions
with respect to the caller. To ensure the validity of the hypothesis, the sampled
dataset is analysed from an entropic perspective. Again, Figure 3b presents the
distribution of cases. Compared to the size distribution, most entropic levels
contain a slightly higher number of core cases compared to fringe cases. However,
the exception levels are when the entropic levels are high and the fringe cases
become predominant. The goal of the entropic decision is to filter out cases where
the callee is very different from the callee. This can be noticed from the larger
number of fringe cases at the high entropic levels. The metrics computed for all
entropic levels are presented in Table 3. Choosing the entropic level at 2.6 makes
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the F1-score reach the highest value of 0.84. The tool will use this entropic level
to mark any candidate cases where callee’s conditional entropy is higher than
2.6 as fringe.

4.4 Optimal Configuration Over Ground Truth

Based on the sampled dataset, the size and entropic levels are [0, 5) and [2.6, ∞).
To evaluate that these levels can be used in tools for software development, an
evaluation of the performance for the tool is performed on the remaining 90%
of the data from the ground truth. Figure 4a presents the comparison of the
F1-score between three different settings of the tool over the ground truth: only
entropic, entropic with size, and entropic with size along with Special Method
Filter (presented in Section 3.4). The plots reinforce that the entropic level [2.6,
∞) can be selected accurately since the tool nearly reaches the peak performance.
In addition, it can be noticed that the optimal configuration of [0, 5) for size,
[2.6, ∞) for conditional entropy with Special Method Filter performs with 4%
in precision, and 4% in accuracy better compared to the settings where only the
entropic level is used or where the entropic and size levels are used. Thus, the
performance of the tool is presented in Figure 4b. RQ3 is answered positively
since the tool achieves a precision of 0.78, a recall of 0.94, an accuracy of 0.79
and an F1-score 0.85.

4.5 Qualitative Analysis

To answer RQ4, we present one core case in addition to the motivating example
from Section 2.1. Additionally, we present two fringe cases, one identified based
on entropic difference and the other based on the size difference.

Case I - Core Figure 5 presents a core case collected from Strawberryfields.
test_parameters_ with_operation belongs to file test_parameters_integration.py,
and the calls from the path can be found in bosonicbackend/backend.py. Func-
tion run_prog runs a Strawberryfields program using the bosonic backend. Then,
init_circuit starts to instantiate the photonic quantum circuit by initialising the weights,
means and covs depending on the different classes of quantum states, such as Cat,
Fock or Gaussian. Based on the candidate path, the program enters the Cat state
through the function prepare_cat from Listing 3. The target of this function is to com-
pute the arrays of weights, means and covariances. It can be seen from Lines 5,
11 and 14 that there are multiple ways to compute the arrays based on differ-
ent conditions. The untested function prepare_cat_real_rep is called by prepare_cat on
Line 14. This callee is presented in Listing 4 and it continues prepare_cat’s objec-
tive by computing the arrays in case it is a real-valued state. Lines 4-8 provide
a brief overview of the mathematical operations performed by prepare_cat_real_rep to
calculate weights, means and covs. This case is marked as core by the tool due to its en-
tropic difference of 0.02. The strong similarity between the tokens of both functions, as
evident in Listing 3 and Listing 4, is also indicated by the entropic difference. Since
prepare_cat is tested and it shares a similar objective with prepare_cat_real_rep (both
computing the weights, means and covs), it should be encouraged to also test function
prepare_cat_real_rep.
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1 def prepare_cat(self, a, theta, p, representation, ampl_cutoff, D):
2 """Prepares the arrays of weights, means and covs for a cat state..."""
3 ...
4 # Case alpha = 0, prepare vacuum
5 if np.isclose(a, 0):
6 weights = np.array([1], dtype=complex)
7 means = np.array([[0, 0]], dtype=complex)
8 covs = np.array([0.5 * self.circuit.hbar * ... ])
9 return weights, means, covs

10 ...
11 if representation == "complex":
12 return weights, means, covs
13 ...
14 return self.prepare_cat_real_rep(a, theta, p, ampl_cutoff, D)

Listing 3: Caller of the untested function

1 def prepare_cat_real_rep(self, a, theta, p, ampl_cutoff, D):
2 """Prepares the arrays of weights, means and covs for a cat state..."""
3 ...
4 weights = np.cos(phi) * even_terms * ...
5 ...
6 means = norm * np.concatenate(weights_real, weights)
7 ...
8 cov = np.array([0.5 * hbar, 0], [0, (E * v) / ...
9 ...

10 return weights, means, cov

Listing 4: Untested function

Fig. 5: Core case from Strawberryfields library. Path is formed from functions: run_prog,
init_circuit, prepare_cat and prepare_cat_real_rep. Function prepare_cat_real_rep computes
a set of arrays as a continuation of prepare_cat due to specific conditions.

Case II - Fringe based on Entropic Difference Figure 6 presents a core
case from Sockeye. test_seq_copy belongs to file test_seq _copy_int.py and
the functions are from files: translate.py and inference.py. The first function,
read_and_translate, reads input and initiates the translation process by calling the
next node in the candidate path. translate.translate starts recording the time for
logging purposes and starts the actual translation process using Translator.translate.
Listing 5 shows a brief part of function Translator.translate. This function is 125
lines long and it uses a model to translate the input received. When the results
output is combined, it will call the untested function, as shown in Lines 4-7 from
Listing 5. _remove_target_prefix_tokens presented in Listing 6 removes a number of
elements from the beginning of target_ids and returns the modified list. Although
_remove_target_prefix_tokens is used twice in Translator.translate, offering code reduction
and reusability benefits, it has little value for the functions from the candidate path.
The tool marks this case as fringe to its entropic difference of 3.27, surpassing the en-
tropic level of 2.6. The entropic difference is high due to the extensive actions performed
by Translator.translate and the token similarity across functions.

Case III - Fringe based on Size Difference A fringe case from Docker-Py is
presented in Figure 7. test_run_with_error belongs to file models_containers_
test.py and the calls are from: models/containers.py and types/containers.py.
Function create is used to create a container without starting it. Then _create_

container_args takes user arguments and transforms them into container argu-
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1 def translate(self, trans_inputs: List[TranslatorInput], fill_up_batches: bool = True)
-> List[TranslatorOutput]:

2 """Batch-translates a list of TranslatorInputs, returns a list of TranslatorOutputs."""
3 ...
4 if num_target_prefix_tokens > 0 and ...:
5 translation.target_ids = \
6 _remove_target_prefix_tokens(translation.target_ids,
7 translation.target_ids, num_target_prefix_tokens)
8 ...

Listing 5: Caller of the untested function

1 def _remove_target_prefix_tokens(target_ids, num_target_prefix_tokens)
2 """Remove target prefix tokens from target Ids"""
3 starting_idx = min(len(target_ids), num_target_prefix_tokens)
4 return target_ids[starting_idx:]

Listing 6: Untested function

Fig. 6: Fringe case due to large entropic difference from Sockeye library. The
tested functions collected for this case are: read_and_translate, translate.translate and
Translator.translate. Function _remove_target_prefix_tokens removes a specific number of
elements from the beginning of a list.

ments. Inside _create_container_args, a HostConfig object is created which triggers a
call to HostConfig.__init__. Part of the initialisation function is presented in List-
ing 7. This function validates the inputs received and sets the values as the fields
of the HostConfig object. In case the input is not as expected, host_config_value_ error

is called (Lines 4-5). As Listing 8 shows, the function host_config_value_error gener-
ates the error message based on the parameter and its mismatched value. While
host_config_value_error improves code reusability, it offers little value from testing
it. Our tool marks this path as fringe since the Decision Algorithm detects that
the callee is too small compared to the caller.

5 Threats to Validity

Internal threats The tool is subject to two possible internal threats. First threat
appears in the generation of the Static NCG from the tool generating the call
graph. PyCG achieved a high precision of 99.2%, with an adequate recall of
69.9% [20]. This means that while it correctly identifies instances of function
calls, there will be some functions that PyCG will not identify. Inherently, our
Static NCG will miss these edges. The goal of our work is not to improve on
PyCG, but rather to generate NCGs to suggest missed functions for integration
testing.

On the other hand, the construction of the Dynamic NCGs is exposed to
a different threat since they are built differently. We utilise Python Trace to
track functions’ execution while running a test and it outputs functions with
partial qualified names. These names are matched with fully qualified names
using regular expression matching. This approach is consistent, but functions
with identical names in the same namespace may not be matched correctly.
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1 def __init__(self, version, ...):
2 ...
3 if userns_mode != "host":
4 raise host_config_value_error(
5 "userns_mode", userns_mode)
6 self[’UsernsMode’] = userns_mode

Listing 7: Caller of the untested function

1 def host_config_value_error(param, param_value):
2 error_msg =’Invalid value for {0} param:{1}’
3 return ValueError(error_msg.format(param, param_value))

Listing 8: Untested function

Fig. 7: Fringe case due to small size difference from Docker-PY library. The path
is: create, _create_container_args, HostConfig.__init__ and host_config_value_error. Function
host_config_value_error generates the error message if the parameter’s value is wrong.

External threats Ideally, the natural language channel should harmonise with
code instructions. Our tool relies on the relation between the natural language
tokens and code instructions to identify the callee’s relevance to the caller. How-
ever, there will be cases when the natural language is generic or carelessly chosen.
Such cases likely become false positives due to the nature of our approach. The
users of our tool can inspect fringe cases and sometimes identify names carelessly
selected.

6 Related Work

This section presents the founding notions of dual-channel research and ap-
proaches of dual-channel in testing.

Dual-channel Research Natural language channel information and its poten-
tial benefits in software engineering tasks have been studied for many years. Due
to a lack of validation that similar names represent the same thing, Anquetil and
Lethbridge defined reliable naming conventions and provided a system along with
a set of conditions to assess the efficiency of naming conventions [1]. Caprile and
Tonella extended their analysis by examining the lexical, syntactical, and seman-
tical structure of the identifiers [3]. The authors present many potential areas
where natural language information could be used, such as program maintain-
ability, program analysis and name recommendations. In fact, they developed a
tool to provide more meaningful names for methods [4].

While natural language information has been used for many years, dual-
channel research was born based on the naturalness property [10]. Hindle et al.
built an n-gram language model to harvest and interpret the repetitive patterns
as statistical properties. The model was used for code completion as a plugin for
Eclipse IDE. Next, Tu et al. added that code is also localised, which means that
code is locally repetitive [23]. The authors proved that these local repetitions
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appear at the file level. Extended n-gram model with a “cache” to capture the
local patterns has accuracy increased by 9.4%. The naturalness and localness
properties paved the way for the dual-channel research area.

Casalnuovo et al. formalised that source code is formed using two commu-
nication channels [5]. First is the algorithmic channel, which represents all the
instructions that the computer executes. The second channel is represented by
the natural language channel, which represents the identifiers and comments
used in the code. The role of the second channel is to present the purpose of
the code in a human-friendly format. Dual-channel research represents solutions
that leverage the connection between the two channels and it has been recently
used to improve various software engineering tasks [19,17,8,16]. Our work shows
that the localness property between caller-callee relationships can be used to
construct NCGs and identify missed functions for integration testing.

Dual-Channel Solutions in Testing Some areas of testing already benefit
from using dual-channel approaches. One example is test prioritisation. Quicker
identification of failing tests has been achieved by selecting tests based on the
similarity computed between code and natural language information [15,9]. An-
other area is test generation, where models generate assert statements based on
the patterns between functions and their tests [24,11]. While our work does not
directly compare, we drew inspiration for our methodology. The biggest chal-
lenges for dual-channel approaches are finding the suitable intermediate repre-
sentation and determining the granularity level to capture the correct patterns.
In our work, we combined these ideas by constructing NCGs and omitting com-
ments from the function’s tokens. We also use the similarity between functions
to identify core or fringe functions.

7 Conclusion

This work shows that the relationship between functions can be extracted and
used to create new program representations like NCGs. We demonstrate how
such representation can aid various software engineering tasks by developing an
approach to detect functions missed in integration testing. Our tool achieved an
accuracy of 78% with a recall of 94%. However, it could perform even better on
projects with clear and established coding and testing guidelines.

The techniques used in this research are not restricted to Python or specific
types of testing. While the outcomes may vary, this work can be extended for
unit testing or to support any programming language. One prospect would be to
examine how testing in different programming languages influences dual-channel
approaches. We believe that novel representations including dual-channel infor-
mation can be used to guide future program analysis techniques. Although such
work may be challenging, it may have the potential to substantially enhance the
state of program analysis.
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